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INTRODUCTION 

Variable selection is the process of selecting 

the most relevant original variables from the 

set of given variables that have predictive 

efficiency in any context. Selection of relevant 

variables is important because it reduces the 

complexity of a model and makes it easier to 

interpret. It reduces the training time and effort 

and also reduces over-fitting. 

For developing better genotypes/hybrids, the 

choice of suitable parents is a matter of great 

concern to the plant breeders. For this purpose, 

breeders conduct experiments and record data 

on large number of variables. These variables 

do not have equal importance. Many of these 

variables are irrelevant and redundant to the 

investigator. 
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ABSTRACT 

Variable Selection is an important problem in classification and discriminant analysis. The 

selection of important variables for the purpose of discrimination between populations is 

important from the point of view of time and resources required for the experimentation. Keeping 

this in view, the present study has been designed to find important characters of Indian mustard 

which can discriminate between high and low yielding genotypes. Secondary data set on 310 

genotypes of Indian mustard recorded for 12 characters was used for discrimination between 

populations of low and high yielding genotypes of Indian mustard. Three variable selection 

methods (Univariate t-test, Rao´s F test for additional Information and Random Forests 

Algorithm) for classification and discrimination were used and compared. Performance of the 

methods was assessed in terms of leave one out cross-validation error and out of bag error rate 

for classification. The Four most important variables for discrimination among genotypes based 

on seed yield per plants were secondary branches, primary branches, days to maturity and 

siliqua number on main shoot. 
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The analysis and interpretation of such data 

sets is often difficult and causes several 

problems.  Different variables in the data carry 

different amounts of information. Some will 

be more informative in some sense than others. 

So, the researchers may wish to reduce the 

number of variables for the final decision 

making while maintaining high performance 

by discarding those least useful. Identification 

of redundant variables and selection of 

important variables is, thus an important area 

of research in multivariate analysis involving 

large number of variables. Variable selection 

is, also employed in order to find most 

important or useful variables for various data 

mining tasks such as classification and 

discriminant. 

 Several criteria and algorithms 

have been purposed for feature selection in 

classification and discrimination problems. 

McCabe (1975) adopted Furnival’s algorithm 

to obtain all possible subsets of variables of 

any size, using Wilk´s Λ criteria. Farver & 

Dunn (1979) considered a forward stepwise 

discrimination procedure and stepwise 

procedure preceded by a preliminary screening 

of variables on the basis of individual t 

statistics. Munita et al. (2006) provided 

stopping rules to identify the redundant 

variables using stepwise discriminant analysis. 

Random forests algorithm which uses 

Decision Trees as base classifier for 

classification was originally conceived as a 

method of building a forest of uncorrelated 

trees  by combining several classification and 

regression type randomized decision trees 

using bagging (Breiman, 1996). Genuer et al. 

(2010) proposed a variable selection method 

based on random forests (Breiman, 2001) and 

described the associated R package called 

VSURF to illustrate its use on real datasets. 

Painsky & Rosset (2016) proposed a 

framework for splitting using leave-one-out 

(LOO) cross-validation (CV) for selecting the 

splitting variable, then performing a regular 

split for the selected variable. 

       The present study has been designed to 

find important characters of Indian mustard 

which can discriminate between high and low 

yielding genotypes. For this purpose, three 

variable selection methods (Univariate t-test, 

Rao´s F test for Additional Information and 

Random Forests Algorithm) for classification 

and discrimination were used and compared. 

Performance of the methods was assessed in 

terms of leave one out cross validation error 

and out of bag (OOB) error rate for 

classification. 

 

MATERIALS AND METHODS 

The study was conducted on Indian mustard 

(Brassica juncea). Secondary data on 310 

Indian mustard genotypes were obtained from 

an experiment conducted by Oilseeds Section 

of the Department of Genetics and Plant 

Breeding, CCS HAU, Hisar during rabi season 

of 2015-16. The observations were recorded 

on three plants per row per character per plot. 

The genotypes were recorded for the 12 

characters; viz. Days to flowering (DF), 

Number of primary branches (PB), Number of 

secondary branches (SB), Main shoot length 

(MSL), Plant height (PH), Siliqua length (SL) 

in centimetres, Siliqua number on main shoot 

(SNOMS), Seeds per siliqua (SPERS), Days to 

maturity (DM), Thousand seed weight (TSW) 

in grams, Seed yield (SY) in gram/plant, Oil 

content (OC) in per cent. The genotypes were 

divided into two Groups (G1 and G2) for low 

and high yielding genotypes on the basis of the 

following criterion: G1: Seed yield < mean-

standard deviation/2 and G2 : Seed yield ≥ 

mean+ standard deviation/2. Accordingly 118 

genotypes contained in G1 were found low 

yielding. Seed yield of 118 genotypes in this 

group was less than 12.71 g/plant. These 

genotypes were considered as individuals from 

low yielding populations of Indian mustard. In 

group 2, there were 80 genotypes whose mean 

seed yield was found high as compared to set 

benchmark mean (19.69). These genotypes 

were considered as individuals from high 

yielding populations of Indian mustard. 

2.1 Test for Homogeneity of Covariance 

Matrices (Box-M Test)  

Box (1949) proposed the statistic for testing 

the hypothesis of equal covariance matrices. 

Let Si is the unbiased estimate of the variance 

covariance  .  
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Null Hypothesis     :  
(1)
   

( )
          

(k)
  

Alternative Hypothesis  H1: At least one of the equality does not hold good 

                                       M ( -k)ln|S|- ∑ (N
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S is the pooled sample covariance matrix.  

Test statistic is given by 
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Box MC
-1 

has a Chi-square distribution with 
 

 
 (   )(   ) degrees of freedom. H0 is rejected if 

the MC
-1 

is greater than tabulated Chi-square. 

  

2.2 Variable Selection Methods for 

Classification and Discrimination   

In this section we describe various variable 

selection methods which were applied on the 

secondary data available for 12 variables of 

mustard crop: 

2.2.1 Rao´s F test for Additional 

Information  

Let Π1: Np (µ
(1)
, ) and Π2: Np (µ

(2)
, ) be two 

populations assumed to be p variate normal 

with same covariance matrix. Let  ( ) (   

 )        ( ) (    ) be the samples of size 

N1 and N2 from Π1 and Π2 respectively. The 

null and alternative hypotheses that discarded 

(p-q) variables do not discriminate between 

these populations or do not provide additional 

discrimination are: 
 

    (   )
    

 and       (   )
    

 

Rao´s F statistic (1973) to test H0 is: 
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are estimates of Mahalanobis distance between 

two populations based on the original set of p 

and q variables respectively. Rao’s F statistic 

follows F-distribution with (p-q, N1+N2-p-1) 

degree of freedom. Reject H0 if Fcal 

> Fp-q, N1 N -p-1(α). 

2.2.2 Random Forests 

The Random forests, a classification technique 

introduced by Breiman (2001) is a substantial 

improvement of bagging that builds large 

collection of de-correlated trees, and then 

averages them.  The method combines bagging 

and the random selection of features. In 

Random forests different subsets of equal 

sizes, are selected with replacement 

(bootstrapping) from the training data, to train 

each tree and the remaining testing data is used 

to estimate the error and importance of 

variable. About two-thirds of the total dataset 

is included in each random subset. The other 

one-third of the data is not used to build the 

trees, and this part is called the out-of-the-bag 

data. This part is later used to evaluate the 

model. This technique uses a user-defined 

number of variables selected at random from 

all of the variables to determine node splitting. 

A randomly selected subset of variables is 

used to split each node. Splits are chosen 

according to a purity measure called Gini 

index. Nodes with the greatest decrease in 
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impurity start the trees, while nodes with the 

least decrease in impurity occur at the end of 

trees. Thus, by pruning trees below a particular 

node, a subset of the most important features is 

created. Random forests develop many 

classification trees, and to add a new 

classification tree to the forest, add it down to 

the each of the trees in the forest. Each tree 

provides its classification and we consider it as 

its vote for that class. The forest considers the 

classification receiving the most votes from all 

the trees in the forest.  

Outlines of Random forests algorithm 

i)  From the Training of n samples draw ntree 

bootstrap samples. 

ii)  For each of the bootstrap samples, grow 

classification tree. At each node, randomly 

sample mtry of the predictors. The tree is 

grown to the maximum size and not pruned 

back. Bagging can be thought of as the 

special case of random forests obtained when 

mtry = p, the number of predictors. 

iii)  The out-of-bag prediction is obtained 

through a majority vote across trees whose 

observation was not included in the bootstrap 

sample.  

Variable Importance using Gini Importance 

Random Forest implementations provide 

variable importance measures. One such 

measure is based on mean decrease in impurity 

(or gini importance). Random Forest uses Gini 

Index based impurity measures for building a 

decision tree. Gini index is the inaccuracy 

measure of the decision trees. The Gini 

inaccuracy criterion for the parent node is 

always higher than the two descendent nodes 

that are split from the parent node. It assigns a 

score and ranks the features for feature 

importance. Improvement in the Gini decrease 

of each individual attribute for every tree in 

the forest provides surplus variable importance 

that is often quite consistent with the 

permutation importance measure.  t each 

node  t  , decreases in  ini impurity are 

recorded for all variables used to form the 

split. Gini impurity  gini(t) is defined as 

follows:   

 

 gini(t)   ( ) gini(t) – gini
split

(t)    

where     gini
split

(t)   p
L
gini (tL)   pRgini (tR) 

and     gini(t) 1- ∑ p(    t)
 

     

  

p(    t) is the rate at which class K is 

discriminated correctly at node t. gini(tL) is a 

Gini index on the left side of the node, gini(tR) 

is a Gini index on the right side of the node, 

p(t) is the number of observations before the 

split, pL is the number of observations on the 

left side after the split, and pR is the number of 

observations on the right side after the split. 

The Gini criterion is used to select the split 

with the highest impurity at each node. The 

average of all decreases in Gini impurity 

yields the Gini Importance or Mean Decrease 

in Impurity (MDI). 

Error Rate Estimation 

Out-of-bag error estimation was proposed by 

Tibshirani (1996) as an important ingredient 

for the calculation of generalization error. It is 

not required to cross-validate or a separate test 

to calculate an unbiased error estimate of the 

validation set in the random forest, since it 

performs eternally during the execution. Each 

tree is built using a random sampling with 

replacement from the original data. About one-

third of the cases are left out as OOB data that 

are not used in the built of the p
th
 tree. Put each 

case from n OOB data in the build of the p
th
 

tree down to the p
th
 tree to get a classification. 

With this process, a test classification is 

achieved for each case in about one-third of 

the trees. Eventually, consider q to be the class 

variable with maximum votes every time from 

m cases of OOB. The OOB error is estimated 

with the factor that q is not equal to the true 

class of m averaged over all cases.  

 The performance of a discriminant 

criterion in the classification of new 

observations in the validation data could be 

evaluated by estimating the probabilities of 
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misclassification or error rates. To reduce the 

bias in the apparent error rate, the methods 

used is cross validation (Lachenbruch & 

Mickey, 1968). In cross validation, n-1, out of 

n training observations in the calibration 

sample are treated as a training set. It 

determines the discriminant functions based on 

these n-1 observations and then applies them 

to classify the one observation left out. We 

repeat this procedure for each observation, so 

that, in a sample of size   ∑     each 

observation is classified by a function based 

on the other N − 1 observations. Let n11 = 

number of correctly classified observations in 

group G1, n22 = number of correctly classified 

observations in group G2, n12 = number of 

observations misclassified in group G2, n21 = 

number of observations misclassified in group 

G1. Let N1 observations are from group G1 and 

N2 observation are from group G2.N1 = n11+ 

n12, N2= n21+ n22 and N=N1+ N2. 

 Error-rate estimates of the conditional 

misclassification probabilities can be calculated 

by the proportion misclassified in the 

validation sample given as: 

 

 ̂(  1) 
n1 

N1

 

 ̂(1  ) 
n 1

N 

 

and the total proportion misclassified is the unbiased estimate of the expected actual error rate, 

E(AER) 

 ̂(   )  
        

     
        

 

Sensitivity:  

Sensitivity of a binary classification test with 

respect to some class is a measure of how well 

this test identifies a condition and expresses 

the probability of a case being classified in that 

class.  It is the proportion of true positives of 

all positive cases in the group.  

 

Sensitivity   
n11

n11 n 1
 

 

Specificity:  

Specificity, on the other hand, expresses the 

proportion of the true negative classified cases 

of a binary classification test of all the 

negative cases in the group.  

 

Specificity   
n  

n1  n  
 

 

3. RESULTS AND DISCUSSION 

Box-M test was applied to test the homogeneity 

of group covariance matrices. According to the 

Box-M test, Chi-Sq (  ) (approx.) = 50.30 at 

degree of freedom (df) = 55 and p-value = 0.65. 

The decision failed to reject the null hypothesis 

of equal covariance matrices and we concluded 

that the low and high seed yielding groups have 

covariance homogeneity. The test for equality 

of mean vectors (Hotelling T
2
) and 

corresponding F-value were found to be 137.93 

and 13.16 respectively. The mean vectors for 

low and high yielding populations were found 

to be significantly different at 5% level of 

significance, which meant that data are suitable 

for discrimination. 
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Pooled variance-covariance matrix for two groups was found to be: 

S = 

[
 
 
 
 
 
 
 
 
 
 
 
 1 . 5 1.   .  -11.   9.  - . 7 - .   . 7  .  -1. 7

1.  1.5  .  - . 9  .5 - .1  .5  .   .  - .55

 .   .   5.1 -1 .  1 .1 - .9  . 7  . 1  . 5 - .  

-11.  - . 9 -1 .  1  . 9   .77  . 9   . 5 - .  - .   .9 

 9.   .5 1 .1   .77    .  - .  7 .7 - .5 1 .9 - . 7

- . 7 - .1 - .9  . 9 - .   .  -1. 7  . 9  .   .  

- .   .5  . 7   . 5 7 .7 -1. 7 9 .5 - .19 -1. 7 -1.  

 . 7  .   . 1 - .  - .5  . 9 - .19  . 7 - . 5 - .  

 .   .   . 5 - .  1 .9  .  -1. 7 - . 5  .   .17

-1. 7 - .55 - .   .9 - . 7  .  -1.  - .   .17 1.  ]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Univariate measures such as mean, standard 

deviation and coefficient of variation of ten 

characters for groups are given in Table 3 

along with the t-values for testing the 

significance of the difference in individual 

variable means. Based on univariate t–test, the 

variables primary branches, secondary, siliqua 

number on  main shoot and days to maturity 

are found to have significant differences in the 

two group means whereas the variables main 

shoot length, siliqua length and thousand seed 

weight are found least discriminatory 

variables. According to t–values, criterion, 

secondary branches is the most contributing 

variable for discrimination followed by 

primary branches, days to maturity and siliqua 

number on main shoot. The least 

discriminatory variable is main shoot length.

  

Table 1: Discriminatory variable selection using univariate independent sample t-test for equality of means 

 Variables 
Std. Deviation CV Mean 

t-value 
Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 

DF 3.97 4.12 8.21 8.43 48.41 48.86 -0.78 

PB 1.16 1.37 23.7 23.52 4.88 5.83 -5.28* 

SB 4.97 5.08 33.66 24.79 14.78 20.5 -7.87* 

MSL 13.17 12.19 16.39 15.08 80.37 80.84 -0.25 

PH  23.61 18.07 11.09 8.31 212.98 217.39 -1.41 

SL 0.57 0.52 16.48 15.2 3.47 3.43 0.59 

SNOMS 10.1 8.59 19.4 15.63 52.04 54.94 -2.10* 

SPERS 1.79 1.84 14.33 14.24 12.46 12.93 -1.77 

DM 2.74 3.14 1.87 2.12 146.44 148.13 -4.00* 

TSW 1.06 1.19 28.72 31.77 3.68 3.76 -0.5 

*t- values are significant at 0.05 levels (2-tailed) 

 

For variable selection in discriminant analysis 

the backward elimination technique begins 

with the computation of the F-statistic for 

examining whether or not a particular variable 

supplies additional information independently 

of the remaining p-1 variables. The 

elimination technique deletes one variable at a 

time. Table 2 contains the Mahalanobis 

distance and Rao´s F-statistic values resulting 

from the backward elimination procedure for 

variable selection in mustard data. The largest 

value of   
  = 2.89 and corresponding smallest 

value of F = 0.00001 corresponds to the 

variable days to flowering. The computed F-

value was compared with critical value F (9, 

187; 0.05) = 1.93. Hence days to flowering is 

eliminated and implies that selected nine 

variables provide equal distance between two 

groups as is given by all ten variables. The 

smallest F-value, in second step, 0.0001 

corresponds to the variable main shoot length. 

The comparison of this with F (8, 187; 0.05) = 

1.99 leads to the elimination of variable main 

shoot length.  
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Table 2: Variable selection using Rao´s F test for no additional Information 

Step Variable Selected Variable 

discarded (p-q) 

subset 

size(q) 

Mahalanobis distance for 

selected variables (  
 ) 

Rao’s 

F 

F 

critical 

1 PB,SB,MSL,PH,SL,SNOMS,SPERS,DM,TSW DF 9 2.89 0.00001 1.93 

2 PB,SB,PH,SL,SNOMS,SPERS,DM,TSW MSL 8 2.89 0.00016 1.99 

3 PB,SB,SL,SNOMS,SPERS,DM,TSW PH 7 2.89 0.002 2.06 

4 PB,SB,SNOMS,SPERS,DM,TSW SL 6 2.79 1.01 2.15 

5 SB,SNOMS,SPERS,DM,TSW PB 5 2.66 1.91 2.26 

6 SB,SPERS,DM,TSW SNOMS 4 2.46 3.00 2.42 

7 SB,DM,TSW SPERS 3 2.30 3.59 2.65 

8 SB , TSW DM 2 2.10 4.26 3.04 

9 SB TSW 1 1.30 7.78 3.89 

 

Continuing in the same way, the variables 

plant height, siliqua length and primary 

branches were eliminated at third, fourth and 

fifth steps respectively. The procedure 

terminated at sixth step when Rao´s F statistic 

value 3.00, exceeded the F (4, 187; 0.05) = 

2.42. The null hypothesis that discarded 

variables siliqua number on main shoot do not 

discriminate between populations is rejected. 

Hence siliqua numbers on main shoot provides 

extra information, and should not be rejected.  

 The Random forests method was also 

applied to the low and high seed yield data, 

using the gini index to evaluate the importance 

of the predictors. For this purpose, total 

sample was divided randomly into two 

samples viz. the training sample and the test 

sample. Split ratio of 75:25 per cent was 

chosen for dividing the sample. Test samples 

(out-of-bag) samples were used to get an error 

rate for each bootstrap tree. Twenty five per 

cent of randomly selected samples were left 

out in modeling each bootstrap tree. The fitted 

tree was then used to get a predicted value for 

the OOB samples. The final classification of 

each OOB sample was determined by counting 

the number of times it was classified as a 

certain class every time it was an OOB 

sample.  

The analysis was carried out using 

‘randomForest’ package in R. To select the 

important variables, the analysis starts by 

taking all ten variables. The data set contained 

198 observations, so the training samples 

comprised of 148 which were used to 

construct the random forests while the left out 

50 observations were used for assessing the 

performance of random forests (test set). The 

number of trees was set to 500. The OOB error 

rate for all ten variables came out to be 30 per 

cent. The variable having lowest gini index 

was discarded. In Table 3, at 1
st
 step, the 

variable siliqua length has the lowest gini 

index (3.85) and hence siliqua length is the 

first variable to be discarded. At step 2, out of 

remaining nine variables, days to flowering 

with lowest gini index of 4.16 is deleted. 

Similarly, at third step main shoot length is 

removed followed by plant height, seeds per 

siliqua, thousand seed weight and so on. 

Variables which are removed from the analysis 

in the later stages considered as important. So, 

according to the gini index, secondary  

branches is the most important variable 

followed by primary branches, siliqua number 

on main shoot and days to maturity.        

 

Table 3: Variable Selection using Random Forest Algorithm 

Step Variable Selected Variable 

discarded 

subset 

size(q) 

Mean decrease  

gini 

OOB error 

rate 

1 DF,PB,SB,MSL,SL,PH,SNOMS,SPERS,DM,TSW SL 10 3.85 30% 

2 DF,PB,SB,MSL,PH,SNOMS,SPERS,DM,TSW DF 9 4.16 28% 

3 PB,SB,MSL,PH,SNOMS,SPERS,DM,TSW MSL 8 6.08 28% 

4 PB,SB,PH,SNOMS,SPERS,DM,TSW PH 7 7.33 30% 

5 PB,SB,SNOMS,SPERS,DM,TSW SPERS 6 8.31 24% 

6 PB,SB,SNOMS,DM,TSW TSW 5 11.58 26% 

7 PB,SB,SNOMS,DM DM 4 11.98 26% 

8 PB,SB,SNOMS, SNOMS 3 19.25 26% 

9 PB,SB PB 2 20.62 36% 

10 SB  1  32% 
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The first four variables led to reasonably stable 

and small error for classification. So, four 

most important discriminatory variables are 

used to compare the methods for variable 

selection. Table 4 shows misclassification 

error rates for these variable subsets selected 

by t-test, Rao's F-test, and Random Forest 

algorithm for the Indian mustard data. Among 

all the methods, t-test is performing better. The 

four variables selected based on t values 

criterion are: No. of primary branches, No. of 

secondary branches, siliqua number on main 

shoot and days to maturity with error rate of 

 1.7  %. In case of Rao’s additional criterion, 

the selected variables are No. of secondary 

branches, seeds per siliqua, days to maturity, 

and thousand seed weight with error rate of 

23.23%. Random forests provide maximum 

error rate 26% and selected No. of primary 

branches, No. of secondary branches, siliqua 

no main shoot and days to maturity as the best 

discriminators.  

 For the evaluation of the variable 

selection methods sensitivity and specificity 

were also measured. The sensitivity criterion 

indicates the percentage of the observations 

that are correctly detected as actually 

belonging to a particular class. The specificity 

criterion among the samples which are not 

related to a class determines the percentages 

that have been recognized correctly as false. 

So the results of Table 4 revealed that in terms 

of the sensitivity and specificity, the best 

classifier performance was given by t-value 

with 83% and 70%, respectively. The degree 

of effectiveness of classifier performance is 

categorized by the accuracy statistical 

criterion. The highest accuracy of the 

classification was obtained by t-test with value 

of 78.28 per cent. 

 
Table 4: Overall comparison of variable selection methods 

Methods Variables  Selected Error Rate (%) Sensitivity Specificity 

t-value PB, SB, SNOMS, SPERS 21.72 0.83 0.70 

Rao's F SB, SNOMS, SPERS, TSW 23.23 0.84 0.65 

Random Forests  PB, SB, SNOMS, SPERS 26.00 0.75 0.70 

 

4. Relative importance of the variables of 

the Indian Mustard  

To study the relative importance, Magnitude 

of Linear Discriminant function coefficient, 

Correlation between variables and 

discriminant scores and Variable importance 

using mean decrease in Gini index methods 

were used.  

Criteria of magnitude of discriminant 

function coefficients was applied for 

computing relative importance of individual 

characters of Indian mustard groups formed 

for classification and discrimination. The 

discriminant function is a linear combination 

of independent variables that will discriminate 

between the categories of the dependent 

variable. It enables to examine whether 

significant differences exist among the groups, 

in terms of the predictor variables. It is also 

used to evaluate the accuracy of the 

classification. Magnitudes of the coefficients 

were indicators of the relative importance of 

variables, as variables with large coefficients 

contribute more to the overall discriminant 

function. Variables ranks orderings according 

to Discriminant function coefficient using all 

variable are presented in Table 5. 

 Based on the coefficient of the linear 

discriminant function, variables thousand 

seeds weight, siliqua length, seed per siliqua 

and primary branches are observed as 

important variables. These variables contribute 

more to the discriminant score for 

discriminating between the groups partitioned 

on the basis of seed yield. Variables plant 

height, days to flowering and main shoot 

length are the least important variables. 

Criteria of correlation between each variable 

and discriminant scores was also applied for 

computing relative importance of individual 

characters of Indian mustard groups formed 

for classification and discrimination. Table 5 
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presents the correlation of various characters 

of Indian mustard with the discriminant 

function score. Secondary branches, primary 

branches, days to maturity, siliqua number on 

main shoot have higher correlation with the 

discriminant score and hence are considered as 

more important variables.           

All the characters were considered in 

Random forests algorithm for computing 

relative importance of individual characters of 

Indian mustard groups for classification and 

discrimination. The mean decrease in Gini 

coefficient measures, how each variable 

contributes to the homogeneity (or purity) of 

the nodes and leaves in the resulting random 

forest. Higher the value of mean decrease in 

Gini index, better is the variable for prediction 

and hence greater impurity is removed from 

the model. The variables wise mean decrease 

in Gini index (Table 5). Application of 

Random forests indicated that if variable  

secondary branches is removed from the 

model then the mean decrease in Gini (or 

decrease in impurity) will be around 18.76. 

Therefore, number of secondary branches is 

the most important variables for discrimination 

purpose. The second most important variable 

after secondary branches is primary branches 

having Gini index values as 9.30 followed by 

siliqua number on main shoot and days to 

maturity. The variable which is least important 

for discrimination on the basis of the seed 

yield of mustard is days to flowering. 

 
Table 5: Relative Importance of variables determined by different methods 

Linear discriminant function coefficient Correlation with discriminant score Mean Decrease Gini 

Variables Linear discriminant function 

coefficient 

Ranks Variables Correlation with 

discriminant score 

Ranks Variables Mean Decrease 

Gini 

Ranks 

DF 0.00 9 DF 0.09 7 DF 3.87 9 

PB 0.20 4 PB 0.55 2 PB 9.30 2 

SB 0.19 5 SB 0.76 1 SB 18.76 1 

MSL 0.00 10 MSL 0.03 10 MSL 4.94 8 

PH 0.00 8 PH 0.16 6 PH 5.45 7 

SL -0.48 2 SL -0.07 8 SL 3.85 10 

SNOMS 0.03 7 SNOMS 0.23 4 SNOMS 6.63 3 

SPERS 0.23 3 SPERS 0.19 5 SPERS 5.60 6 

DM 0.09 6 DM 0.43 3 DM 6.56 4 

TSW 0.83 1 TSW 0.06 9 TSW 5.95 5 

 

To measure the strength of relationship in 

ranking behaviour of the three methods 

(Linear discriminant function coefficient, 

Correlation with discriminant score and Mean 

Decrease Gini) Spearman rank-order 

correlation was used. Spearman Correlation 

Coefficients in Table 6 displayed the 

correlation and the t-value under the null 

hypothesis of zero correlation. It showed that 

correlation between Mean Decrease Gini and 

Correlation with discriminant score is 0.81 

which is found significant with t-value as 3.85 

at 5% level of significance. This indicates a 

strong positive relationship between the ranks 

of these two methods.  

 According to the ranks obtained under 

two methods (Correlation with discriminant 

score and Mean Decrease Gini) first four 

variables (Secondary branches, primary 

branches, days to maturity, siliqua number on 

main shoot) are same. From the ranks of both 

methods it is clearly indicated that secondary 

branches is most important variable. Second 

most important variable is primary branches 

followed by days to maturity and siliqua 

number on main shoot as third and fourth 

important variable.     
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Table 6: Spearman Correlation Coefficients for the ranks of three methods 

 

Linear discriminant function 

coefficient 

Correlation with discriminant 

score 

Mean Decrease 

Gini 

Linear discriminant function 

coefficient 
1.00 0.09 (0.26) 0.19 (0.54) 

Correlation with discriminant score 0.09 (0.26) 1.00 0.81* (3.85) 

Mean Decrease Gini 0.19 (0.54) 0.81 (3.85) 1.00 

* indicate significant t-value at 5% level of significance 

 

Relative importance of variables using Gini 

index plot 

Fig 1 depicts the variable importance by 

measuring the decrease in mean Gini. Variables 

are ranked and displayed in the Variable 

Importance Plot created for the Random Forest 

by this measure.  It was observed that the 

secondary branch is a key classifier. Three 

variables in descending order of importance are 

primary branches, siliqua no on main shoot and 

days to maturity. However, siliqua length and 

days to flowering are the two least important 

variables. 

 

 
(c) 

Fig. 1: variable importance plot for the variable using mean decrease gini 

 

CONCLUSION 

Three methods; viz. univariate t-test, Rao´s 

additional information and Random forest 

were used for selection of variables for the 

purpose of classification and discrimination 

between low and high seed yield population of 

Indian mustard.  The purpose of these methods 

was compared in term of classification error 

rates. Univariate t-test method was observed to 

be best with least error rate 21.72%. The 

optimum size of four using this method 

included the characters: No. of primary 

branches, No. of secondary branches, siliqua 

number on main shoot and days to maturity. 

Relative importance and ranking of variable 

was studied using magnitude of discriminant 

function coefficient, Mean Decrease Gini 

index and correlation with discriminant score. 

The Mean Decrease Gini index and correlation 

with discriminant score method provided 

similar pattern of ranking. The most important 

variable selected by these are number of 

primary branches, number of secondary 

branches, siliqua number on main shoot and 

days to maturity. 
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